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Abstract: Using mathematics from the method of the exponential scale, crystals inner and outer structures are 
given. A number of fundamental crystal structures are described as mathematical functions. Plotting the 
equations gives the classical ball representation of the structures. In the case of intricate structures, the 
pedagogical interest lies in the possibility of describing the whole structure as the sum of very simple partial 
structures, each corresponding to a part of the equation. Structures given are primitive cubic packing, primitive 
hexagonal packing, face-centered-cubic close-packing, hexagonal close-packing, body-centered packing, CsCl, 
diamond, zinc blende, CaF2, ReO3, perovskite, NaCl, Mg3NF3, SiO2, Cu3Au, NiAs, wurtzite, and graphite. 

A crystal-structure dynamics is described. Varying a constant in the equation, it is possible to modify the 
representation of the structure from small ball-shaped atoms to packing of interconnected polyhedrons and 
finally to minima-like surfaces. This last description gives a much deeper understanding of the actual structure in 
term of forces and open spaces. The final, and maybe the main, interest of this concept of surfaces is the 
possibility of shedding light on the difficult problems of structure�property relationships. 

Introduction 

In his award address, Arthur B. Ellis, the 1997 winner of the 
ACS Pimentel award, said, �Among the numerous cutting-
edge research areas, many involve the solid state. Yet, until 
recently, solids were a relatively small part of the chemistry 
curriculum� [1]. Trying to understand the reasons for that 
situation, he identifies three obstacles: the specific language, 
the lack of time in the curriculum, and the difficulty to 
visualise the structures: �Tools are needed to make these 
structures comprehensible� [1]. Another reason is the 
conservatism of textbooks, whatever their level and their 
quality, as underlined by R. J. Gillespie [2]. Books devoted to 
this domain are rather scarce. Moreover, the most important 
textbooks in inorganic chemistry do not consider the structures 
of solids as significant materials. In a recent French edition of 
Inorganic Chemistry, by Huheey, Keiter and Keiter [3], 38 
pages out of 964 are used to describe the packing of atoms, 
structure maps, defects in crystals, ionic conductivity, band 
structure, superconductors, and any other topics related to 
solid structure. Even though the texts might be well-written 
and beautifully illustrated, almost all of them are restricted to a 
kind of bestiary of the basic structural types. Yet, over the past 
fifteen years, new valuable tools have been found that allow a 
logical description of intricate structures, a better 
understanding of the correlation between structures and, of 
utmost importance, the interpretation of their properties. In a 
search for unifying methods in structural chemistry, a great 
deal of effort has been devoted to the study of surfaces as 
mathematical tools to understand the organization of 
crystalline solids. 

Periodic Minimal Surfaces (PMS) were the first surfaces 
used to furnish useful descriptions of crystal structures. Such 
surfaces are simply defined as surfaces of zero mean curvature, 
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that is, at each point the sum of both principal curvatures is 
zero; they correspond to optimal surfaces adopted by soap 
films. The similarity between PMS and crystal structures was 
first suggested by A. H. Schoen [4]. The significance of PMS, 
the equipotential surfaces, and the nodal surfaces, as space 
partitioners was later developed to describe inorganic or metal 
structures [5�12]. 

Recently, a new type of description has emerged. 
Mathematical functions, calculated with single analytical 
equations using exponential scale mathematics, give crystal 
structures directly for the first time ever. This work by S. 
Andersson and one of us (M. J.) has been reported in a number 
of papers and in the book The Mathematics of Structures�the 
Exponential Scale [13�17]. A general equation of symmetry 
has been derived that gives the outer shape (the morphology) 
of crystals as well as the crystal structure. This involves using 
functions like the Gauss error function which can be made 
periodic [15, 18]. In addition, molecules may be described 
using the method of finite periodicity. An example of this is 
the description of DNA [19]. 

In the present paper, we would like to show how the so-
called exponential scale can be used for teaching structural 
chemistry using simple mathematics. This scale can be used at 
different levels. At the simplest level, the plotting of the 
equations gives a classical �ball� representation of the 
structures. In the case of intricate structures, the educational 
interest lies in the possibility of describing the whole structure 
as the sum of very simple partial structures, each 
corresponding to a part of the equation. By varying a constant 
in the equation, it is also possible to modify the representation 
of the structure from small ball-shaped atoms to packing of 
interconnected polyhedrons and finally to minimal-like 
surfaces. This last description gives a much deeper 
understanding of the actual structure in term of forces and 
open spaces. The final, and maybe the main, interest of this 
concept of surfaces is the possibility that it sheds light on the 
difficult problems of structure�property relationships.
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Figure 1. Two planes added on the exponential scale. C = 1010. The 
function is drawn in the region �12 < x,y,z < 12. 

 
Figure 2. Six planes added on the exponential scale forming a cube 
with C = 1010 and the same boundaries as in Figure 1. 

 
Figure 3. Six planes added on the exponential scale forming a sphere 
with C = e2 with �1.5 < x,y,z < 1.5. 

Crystal morphology 

Crystals constitute the most well-ordered material in the 
solid state. The structure of a macroscopic crystal can be 
described by a periodic translation of its smallest unit cell, 
which typically has a size of around 1 nm. This small unit 
represents a formidable reduction of data; it is the sole 
information one needs to describe and understand a crystal 
structure, because it repeats with translation periodicity. Also, 
the morphology of a crystal is controlled by the structure, and 
this results in crystals having planar and sharp outer 
boundaries in the form of polyhedrons. 

One of the characteristics from exponential scale 
mathematics is that most objects can be described by 
combinations of planes. Before going into crystal structures, 
we, therefore, introduce the fundamentals of the mathematics 
by building the morphology of crystals because they are so 
obviously constructed by planes. 

The function x = 10 is in three dimensions a plane parallel 
with the yz plane, and y = 10 is a plane parallel with the xz 
plane. If we want to add these planes and let them continue 
smoothly into each other, without intersections or singularities, 
we can add them exponentially, as in eq 1 

 10 10 Cx y+ =  (1) 

The constant, C, is the value for which this implicit function 
is displayed. The lower the value is, the closer to the origin the 
planes are; the higher it is, the further away they are and the 
sharper the intersection will become. With C = 1010, the two 
planes meet smoothly as in Figure 1. More planes can be 
added in the same manner. In eq 2, we have added four more 
terms, which describes the cube in Figure 2. 

 10 10 10 10 10 10 Cx y z x y z− − −+ + + + + + =  (2) 

The higher the value of the constant, the sharper the cube 
gets and, at a low constant value, the planes will affect each 
other more, which will give a more spherical object. With C = 
e2, eq 2 leads to a beautiful sphere (Figure 3). 

With these types of functions, all crystal morphologies can 
be described [17]. The different planes are simply added on 
the exponential scale, generating a unique mathematical 
equation for the polyhedrons. We can use the law of addition 
to derive analytical functions corresponding to more and more 
sophisticated objects. The exponential function works as a 
mathematical �glue.� 

Crystal structures 

By periodically repeating the planes in the polyhedrons 
using trigonometric functions, crystal structures are formed. In 
this section, we would like to show how very simple equations 
allow one to visualize the basic packings and how the 
combination of partial structures, that is, partial equations, 
leads to the most intricate structures. The following equations 
in this section can easily be plotted with classical mathematical 
software applications such as Mathematica or Maple, running 
on a personal computer. Starting from the equations provided, 
the students can generate the structures in three dimensions, 
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Figure 4. Primitive cubic-packing. C = 1.3 with �0.75 < x,y,z < 0.75. 

 
Figure 5. Face-centered packing. C = 0.6 with �0.75 < x,y,z < 0.75). 

rotate them to have a better feeling of the space organization, 
and, most importantly, learn by themselves that the very 
complicated structures can be easily �dismantled� into more 
simple components as demonstrated in this section for the 
perovskite structure. 

We start by periodically repeating the sphere with the cosine 
function, and now use the base e instead of 10. We only use 
the positive terms from the sphere, as in eq 3 

 cos(2π ) cos(2π ) cos(2π )e e e Cx y z+ + =  (3) 

This equation results in the primitive cubic packing (cP) of 
atoms, as seen in Figure 4 (the cell edges have been added and 
are not part of the surface). 

Now, playing with this exponential scale, we can derive the 
fundamental cubic symmetries and start to build more complex 
structures by using the law of addition. In order to keep 
equations as simple as possible, we will take advantage of the 
trigonometric relationships and use mainly products of 
trigonometric functions, although several equations may 

correspond to the same packing. For instance, eq 3 gives a cP 
packing with a cell parameter, the repeating distance, equal to 
1. A similar result is obtained with 

 cos(2π ) cos(2π ) cos(2π )e Cx y z+ + =  (4) 

or 

 
2 2 2cos (π )cos (π ) cos (π )e Cx y z =  (5) 

Thus, the simplest function we will use to derive the 
equations corresponding to the structures we are looking for is  

 cos(2π )cos(2π )cos(2π )e Cx y z =  (6) 

This exponential function will be our building block. 
If we plot eq 6, we get, for C = 0.6, a beautiful drawing of 

the cubic face-centered (cF) packing. One unit cell is shown in 
Figure 5. It is useful to note that a phase shift in eq 6 gives a 
shift of the atoms without changing the structure. For example, 
a phase shift from cos(2πx) to �cos2πx, 

 cos(2 )cos(2 )cos(2 )e Cx y zπ π π− =  (7) 

results in a shift of 1/2 along a cell edge. Changing cos2πx to 
sin2πx,  

 sin(2 )cos(2 )cos(2 )e Cx y zπ π π =  (8) 

results in a shift of 1/4 along the x axis, and setting all 
trigonometric functions to sine terms, 

 sin(2π )sin(2π )sin(2π )e Cx y z =  (9) 

gives a shift of ¼, ¼, ¼ in x, y and z. The only consequence of 
these phase shifts is a shift of the unit cell origin. Obviously, 
there is no change in the structure. The interesting point is that 
each exponential term can be viewed as the generator of a 
partial structure and, thus, the addition of several exponential 
terms allows one to demonstrate the basic relationships 
between different packings and to generate complicated 
structures. We can use our building block, shift it and add it to 
other building blocks, to create desired packings. For instance, 
the primitive cP packing can be described as the 
interpenetration of two cF packings shifted by a/2; thus, the cP 
equation can also be written as the sum of eqs 6 and 7 

 cos(2π )cos(2π )cos(2π ) cos(2π )cos(2π ) cos(2π )e e Cx y z x y z−+ =  (10) 

which is equivalent to eq 5.  
One of the most important structures in solid-state chemistry 

is the diamond structure. It can be described as the 
interpenetration of two cF networks, for which one is shifted 
by ¼, ¼, ¼.; thus, the diamond equation is generated by the 
sum of eqs 6 and 9 

 cos(2 )cos(2 )cos(2 ) sin(2π )sin(2π )sin(2π )e e Cx y z x y zπ π π + =  (11) 



Teaching Crystal Structures with 3-D Surfaces Chem. Educator, Vol. 5, No. 6, 2000 299 

© 2000 Springer-Verlag New York, Inc., S1430-4171(00)06434-6, Published on Web 11/17/2000, 10.1007/s00897000434a, 560296.pdf 

 
Figure 6. The diamond structure. C = 3.2 with �0.87 < x,y,z < 0.37). 

 
Figure 7. Body-centered-cubic packing. C = 3.2 with �0.36 < x,y,z < 
0.36. 

 
Figure 8. The CaF2 fluorite structure. C = 2.9 with �0.1 < x,y,z < 1.1. 

The corresponding structure is pictured in Figure 6. 
Introducing coefficients in the exponentials allows selective 
changing of the sizes of different sets of atoms. This is done in 
eq 12, which leads to the zinc blende structure, that is, cubic 
ZnS, 

 1.2cos(2π )cos(2π )cos(2π ) 0.9sin(2π )sin(2π )sin(2π )e e Cx y z x y z+ =  (12) 

Using the same strategy, affecting a phase shift by changing 
cosine to sine in eq 5 results in a cP cell shifted by ½, ½, ½. 
Two interpenetrating cP packings shifted by this vector lead to 
a cubic body-centered (cI) packing, for which the equation is: 

 
2 2 2 2 2 2cos (2π )cos (2π )cos (2π ) sin (2π )sin (2π )sin (2π )e e Cx y z x y z+ =  (13) 

A cI unit cell is pictured in Figure 7. As for the zinc blende 
structure, the atom sizes can be changed selectively and eq 14 
gives the well-known CsCl structure, 

 
2 2 2 2 2 21.2cos (2π )cos (2π ) cos (2π ) 0.9sin (2π )sin (2π ) sin (2π )e e Cx y z x y z+ =  (14) 

It is of interest to note that the function 
cos(2π )cos(2π )cos(2π )e x y z  gives a cell parameter that is twice the 

size corresponding to the function 
2 2 2cos (2π )cos (2π )cos (2π )e x y z . 

This fact can be used to build a more complex structure. The 
CaF2 fluorite structure can be described with two 
interpenetrating networks: one cF of calcium cations with a 
cell parameter a and one cP of fluorine anions shifted by ¼, ¼, 
¼ with a cell parameter a′ = a/2. The equation for this is 

 
2 2 20.75cos(2π )cos(2π )cos(2π ) sin (2π )sin (2π )sin (2π )e e Cx y z x y z+ =  (15) 

Figure 8 illustrates this beautiful structure. If the coefficient, 
0.75 in the first term is set to 1, the antifluorite structure 
(permutation of cations and anions) is obtained. 

Finally, we will illustrate the power of the law of addition 
with one of the most famous structures, perovskite, CaTiO3. 
Hundreds of compounds with remarkable physical properties 
crystallise with this structure. Three sets of atoms form the 
structure, titanium atoms are located at the cube corners, 
surrounded octahedrally by oxygen atoms that lie in the middle 
of the cell edges, and finally the calcium atom is situated in the 
center of the cubic cell. Titanium and oxygen alone form a 
ReO3 network. Equation 16 gives the oxygen network, 

 
2 2 2 2 2 2

2 2 2

sin (2π )cos (2π )cos (2π ) (cos (2π )sin (2π )cos (2π )

cos (2π )cos (2π )sin (2π )

e e

e C

x y z x y z

x y z

+

+ =
 (16) 

The titanium atoms are then obtained in eq 17 by adding the 
all-cosine term to the function in eq 16, 

2 2 2 2 2 2

2 2 2 2 2 2

sin (2π )cos (2π )cos (2π ) cos (2π )sin (2π ) cos (2π )

cos (2π )cos (2π )sin (2π ) cos (2π )cos (2π ) cos (2π )

e e

e e C

x y z x y z

x y z x y z

+

+ + =
 (17) 
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Figure 9. The perovskite structure. C = 6.5 with �0.1 < x,y,z < 0.6. 

and this builds up the ReO3 structure. Finally, adding a fifth 
all-sine term and introducing coefficients to selectively change 
the atom sizes, we get the full perovskite structure with eq 18, 

 

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

sin (2π )cos (2π )cos (2π ) cos (2π )sin (2π )cos (2π )

cos (2π )cos (2π )sin (2π ) 0.95cos (2π ) cos (2π )cos (2π )

1.3sin (2π )sin (2π )sin (2π )

e e

e e

e C

x y z x y z

x y z x y z

x y z

+

+ +

+ =

 (18) 

The structure is pictured with C = 6.5 in Figure 9. 
In our teaching experience, it is always difficult for the 

students to see the spatial atomic organization if a structure is 
a little bit more complicated than NaCl for example. The 
mathematics described in this section offers the unique 
possibility to built step-by-step complicated structures starting 
from the most simple packings of atoms. Other equations 
corresponding to cubic and hexagonal structures are given in 
the appendix at the end of this paper. In addition, instructors 
can easily built their own examples. Moreover, students show 
a strong tendency to consider the structural chemistry as a 
collection of strange animals, each of different species. 
Exponential mathematics offers the possibility to give 
evidence of the relationships between different structures, for 
example the equations of diamond; zinc blende, ZnS; and 
cristobalite. 

Dynamical Structure Descriptions. Structure�Property 
Relationships 

The functions given above all represent atomic packings of 
crystal structures, and the way of constructing them by adding 
different partial structures can be useful in the tough work of 
teaching structural chemistry. They also can help to generate a 
much deeper understanding of crystal structures by varying the 
isosurface constant, C. This constant represents a kind of 
fourth dimension in the structures and, therefore, the structures 
become dynamic. Each equation consists of an infinite number 
of isosurfaces, for which we, so far, have only displayed the 
atom-like ones. By scanning the constant, it is possible to 
continuously follow the structure from small ball-shaped 
atoms, let them grow to reach packings of interconnected 

polyhedrons, and then further to dividing minimal-like 
surfaces. These surfaces are useful tools for at least three 
applications. They constitute a powerful unifying tool in solid-
state chemistry as they allow a simple and unique description 
of different complex structures in different fields (metallic 
alloys, oxides, etc.). These surfaces can also be used to 
understand the atomic interactions in the structures. Finally, 
they are an efficient tool to explain structure�property 
relationships. 

Still, the first interest of this concept is that a much clearer 
understanding of the structure can be reached by this 
description. We will demonstrate this for the case of diamond 
packing, eq 11. Figure 10 represents the surface calculated for 
different values of the isosurface constant. The cubic boundary 
in this figure is the space in which the function is calculated, 
and it should not be confused with the crystallographic unit 
cell. In 10a, the constant is 1.38, and the surface corresponds 
to a classical �ball� view of the packing. Increasing the 
constant makes the balls larger until they meet each other and 
connect through catenoids at C = 1.41, resulting in the 
representation of the structure as a bond network in Figure 
10b. For a constant of 2.0 in 10c, the size of the balls is greatly 
increased and they merge into each other forming large 
catenoidic channels. The structure here forms a continuous 
dividing surface, an analog to a minimal surface called the D 
surface. For a constant equal to 2.84 in Figure 10d, we obtain 
corner-connected tetrahedrons, and at C = 3.6 in Figure 10e, 
we again get a diamond packing, but this one resides on the 
other side of the D surface (compare the atomic positions in 
Figures 10a and 10e). Figure 11 gives an enlarged view, 
showing the symmetry of the D surface that separates the two 
interpenetrating diamond structures. 

This demonstrates a general property of minima-like 
surfaces�they are space partitioners; they split space into two 
interpenetrating domains. The dynamic description of a 
structure generates a better and more correct description of the 
actual structure and gives a feeling for the forces and open 
spaces present. This new way of visualising the structures is 
probably the main benefit of this mathematical approach. First, 
a particular surface allows one to describe a series of structures 
with the same topology. For example, the D surface, used to 
describe the diamond structure, also corresponds to metallic 
alloys, such as the γ-brass related structure, Li21Si5; or the 
Laves phase, MgCu2; or to the extremely complicated zeolite, 
faujasite. The P surface, which corresponds to a primitive 
cubic packing (eq 3, Figure 12), allows a common description 
of CsCl; α-Mn; the tungsten bronze, NaxWO3; and the zeolite, 
Linde A, among many other structures. Numerous examples 
are given in references 8 and 10. For many purposes, a precise 
description using atomic positions is not necessary. For 
example, in the case of the complicated structures of zeolites, 
it is often sufficient to show the topology of the cages and 
tunnels to explain the chemical and physical properties. The 
description in term of minima-like surfaces is a very useful 
tool. 

In other cases, the coexistence of two descriptions, atomic 
positions and surface, is extremely fruitful. Taking again the 
example of the zeolites, Linde A and faujasite, the comparison 
of the atomic positions with the corresponding surface shows 
that the aluminosilicate network fits onto the surface, whereas 
the exchangeable cations and water molecules lie in the 
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  a   b 

  c   d 

  e 

 
Figure 10. (a) Diamond packing, C = 1.38 with �0.6 < x,y,z < 0.6); (b) network of tetrahedra connected via catenoids, C = 1.41; (c) the D surface 
analog, C = 2.00; (d) corner-connected tetrahedra, C = 2.84, on the other side of the D surface; (e) diamond packing, again, with C = 3.6; this one 
interpenetrating the first one shown in Figure 10a. 
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Figure 11. Enlargement of the D surface. 

 
Figure 12. Enlargement of the P surface. 

tunnels or the cages. Moreover, the oxygen atoms of the 
network are coordinated in such a way that the lone pairs point 
towards the cations on both sides of the surface [10], 
accounting for the polar interactions. 

This concept of surfaces acting as space partitioners is 
extremely powerful to illustrate structure�property 
relationships. One of the best examples is the problem of the 
conduction paths in fast-ion conductors [8,20]. The very good 
ionic conductor, α-AgI, is known to crystallize with a bcc 
�immobile� array of iodine anions and disordered silver 
cations. The anions are situated on both sides of the minimal 
surface P. The cations, ensuring conductivity, move along 
trajectories fitting onto the surface. This is the best route in 
term of charge considerations because the largest potential 
gradients are always perpendicular to the surface. By 
definition, there is no potential gradient along a minimal 
surface. The same conclusions can be drawn for other ionic 
conductors, such as PbF2; partially stabilized zirconia; or β-
eucryptite, NaxAl2O3 [10]. Phase transitions can also be 

explained in the light of the minimal surfaces. The martensitic 
transformation in steel is always difficult to teach. The 
classical view of this transition is the Bain mechanism. 
Crystallographically the transformation is from fcc austenite to 
bcc martensite. It involves a 17% compression along one axis 
and a 12% expansion along the two other axes. The 
transformation is characterised by a drastic atomic 
rearrangement, a macroscopic shape change, a very high 
velocity, and an orientational relationship between the 
austenite and the resulting martensite. This mechanism is 
widely acknowledged because it gives an excellent agreement 
with the experimental results, but it is unable to explain the 
real movements of the atoms during the transformation. The 
austenite and martensite structures can be described with 
minimal-like surfaces, the D surface and the gyroid surface, 
respectively. In both structures, iron atoms are fixed on the flat 
points of the surface. The martensitic transformation can be 
described as a continuous bending from the D surface to the 
gyroid surface in such a way that iron atoms remain on the flat 
points and all intermediate structures are themselves minimal 
surfaces [7]. Other examples of phase transitions can be found 
in ref 10 and references therein  

Readers interested in learning more about the mathematics 
of minimal surfaces may explore different Websites to get 
images and bibliography. One of the best is the site of the 
Scientific Graphics Project, headed by David Hoffman, at the 
Mathematical Sciences Research Institute, Berkeley [21]. 
Pedagogical short texts and magnificent images are given. A 
very complete bibliography, particularly papers by D. 
Hoffman, is available [22]. The site of the Institute of Physical 
Chemistry in Warsaw (Poland) [23] presents beautiful 
enlargements of the most known surfaces (P surface, diamond, 
gyroid, etc.) and gives references to interesting applications in 
the field of microemulsions, surfactants, and block 
copolymers. Other geometry resources on the World Wide 
Web can be found on the mentioned sites. 

Using Exponential-Scale Mathematics with Students 

This method of teaching crystal structures has been tested at 
the Universities of Geneva (Switzerland) and Grenoble 
(France) with students in their second and third years [24]. 

The only prerequisite is a normal knowledge of the 
exponential and trigonometric functions. The mathematics of 
periodic minimal surfaces is not needed, but the concept of 
equipotential surfaces is useful. Before applying exponential-
scale mathematics to crystal structures, students have been 
trained to use Maple, which takes a relatively short time as the 
programming-language is simple and the plot of 3D-surfaces is 
preprogrammed in the software application. The short program 
used to draw Figure 5, using eq 6, is given as an example in 
reference 25. 

In a first step, students work on very simple equations, as 
eqs 1 and 2, in order to understand that the exponential 
function acts as a glue between several objects and to see the 
effect of the constant value on the final object. Then, starting 
with eq 3 (the necessity of using trigonometric functions to get 
a periodicity is obvious for the majority of the students), the 
students learn the consequences of introducing a phase shift 
(from cos(2πx) to �cos(2πx) or sin(2πx), for example) and 
using a multiple angle (from cos(2πx) to cos(4πx), for 
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Figure 13. The DNA double helix with its bridging hydrogen bonds. 

example), as they apply to atomic positions and cell 
parameters. 

The second step sheds light on the notion of a subnetwork. 
There are three objectives: to built the most important basic 
structures and to create a good 3-D vision of these structures, 
to give evidence of the relationships between different 
structures (see eqs 11 and 22, for example), and to connect two 
descriptions that are traditionally separated: the packing of 
atoms (ball-and-stick) and the packing of polyhedrons. In our 
experience, this last step is always the limiting one if structural 
chemistry is taught with pictures and plastic models. This is 
true for two reasons: (1) it would cost a fortune to built all the 
models necessary to demonstrate these points and (2) the 
students usually do not have enough time to manipulate the 
models. Thus, it is very often difficult to go on when the 
knowledge corresponding to this step is not well assimilated. 
With our mathematics, provided that the software application 

is in readily accessible, the students make their own models, 
which they can rotate in 3D, modify, and print to compare with 
the textbook. All figures given in this paper represent one unit 
cell; obviously, it is possible to draw larger packings of atoms 
simply by enlarging the space in which the function is 
calculated; however, larger packings are more difficult for 
students to understand. Other programs enable the viewing of 
3-D structures on the computer (i.e., CrystalMaker and Ortep) 
and the drawing of more sophisticated pictures. Still, very 
often, they are not easy to use by students (Ortep) and not 
readily available, whereas Mathematica or Maple are available 
in many departments. Moreover, programs like Ortep work 
with atom coordinates and only give the classic ball-and-stick 
representation. 

In a third step, the concept of a periodic minimal surface is 
introduced very pragmatically as demonstrated by Figure 10. 
The complex mathematics used to study the PMS is 
completely transparent in this approach. Two main objectives 
for this step are: 

• to show that a particular surface corresponds to different 
structures and, thus, can be used to describe very complex 
structures that, otherwise, would be incomprehensible to 
the student. (For example, P and D surfaces, which are 
relatively easy to see, can be used to introduce the 
structural chemistry of zeolites.) 

• to illustrate structure�property relationships. (A number 
of excellent textbooks explain the mechanism of 
conduction in fast ionic conductors [26]. Still, in our 
teaching experience, even the most intelligent students 
fail to understand the mechanism when looking at the 
ball-and-stick structure of β-alumina, for example. We 
think that it is much easier to understand the problem of 
conduction paths looking at the minimal-like surface 
corresponding to the structure. In this part of the work, 
surfaces must be precalculated (or taken from the 
literature) and given to the students. Otherwise, it takes 
them too much time.) 

Finally, we would like to emphasise again that the complex 
mathematics of PMS are not needed to use our method. PMS 
is a teaching tool that is much more efficient that ball-and-
stick models. Of course, if the students have a good knowledge 
in crystallography, this approach can be linked to a description 
based on symmetry elements and space groups (see refs 11 and 
27). 

Conclusions and Extensions 

The exponential scale functions allow us to build up crystal 
structures by adding different building blocks, just like we do 
when building plastic models. The result is a single analytical 
mathematical function describing the structure. A further 
strength of such a description is the dynamic behavior revealed 
when scanning the isosurface constant. This way a more 
thorough understanding of the structures can be obtained, and 
the connection between different types of traditional 
descriptions (ball models, polyhedral models, bond networks, 
minimal surfaces, rod packings etc.) is better understood. 

There are many extensions for this type of mathematics. It 
allows for the combination of different types of geometry, 
creating forms that otherwise are not possible to describe with 
single mathematical functions. Finite periodic functions that 
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also contain external outer boundaries and describe finite 
objects can be made. For instance, it is possible to add the D 
surface to outer boundaries shaped as an octahedron to create a 
cubosome, which is a lipid bilayer formation [28]. Also, 
isolated molecules can be created and later combined. Using 

other functions, for instance the Gaussian distribution, 
2

e x− , it 
is possible to hand-make structures by placing isolated balls at 
positions of choice. 

Finally, to illustrate how powerful this mathematical 
approach is, the DNA double helix can be modelled by the 
following equation 

 2 2

π 1 π2 2
10 2 10
π 3 ( ) /10
2 5

cos( ) ( )sin( )

cos( ) e 0

z z

z x y

xy x y

+

+ −

− + =
 (19) 

This equation generates the structure in Figure 13, which 
shows one pitch of the DNA double helix with its ten base 
pairs and their bridging hydrogen bonds. The two first terms in 
eq 19 create a double helicoid, the third generates saddles in 
this, and the last term is a cylinder exponentially added to 
close up the surface to the double helix [19]. 
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Appendix: More Equations 

Below we give the equations of several well-known 
structures that should help the reader to understand the 
principle of the law of addition. We refer to classical 
textbooks, such as Structural Inorganic Chemistry [29] for the 
corresponding structure illustrations. 

1 Cubic structures. 1.1 Sodium chloride, NaCl 

 
2 2 2cos(2 )cos(2 )cos(2 ) 1.5cos (2 )cos (2 )cos (2 )e e 3.2x y z x y zπ π π π π π+ = (20) 

1.2 Magnesium fluoronitride, Mg3NF3 

 

2 2 2

2 2 2 2 2 2

cos(2 )cos(2 )cos(2 ) 1.5cos (2 )cos (2 )cos (2 )

cos (2 )cos (2 )cos (2 ) sin (2 )sin (2 )sin (2 )

e e

(e e )
0.75

x y z x y z

x y z x y z

π π π π π π

π π π π π π

+

− +
=

 (21) 

The structure of Mg3NF3 is a defect NaCl structure. 
Magnesium atoms lie on the face centers, fluorine atoms on 
the middle of the cell edges, and the nitrogen atom at the 
center of the cubic cell. Thus, the cube corners are not 
occupied. In eq 21, the first two terms correspond to the true 
NaCl structure and the two last terms to the �missing� atoms. 

1.3 Cristobalite, SiO2 

 
2 2 2 2 2 2

1.2cos(2π )cos(2π )cos(2π ) 1.2sin(2π )sin(2π )sin(2π )

cos (4π )cos (4π )cos (4π ) sin (4π )sin (4π )sin (4π )

e e

e e
3.8

x y z x y z

x y z x y z

+

+ +
=

 (22) 

Cristobalite is one of the three natural forms of silicon oxide, 
along with quartz and tridymite. 

1.4 Ordered Cu3Au alloy 

 
2 2 2cos (2π )cos (2π )cos (2π ) cos(4π )cos(4π )cos(4π )e e 2.6x y z x y z+ =  (23) 

2 Hexagonal Structures. Obviously, the use of the 
exponential scale is not restricted to cubic structures. We just 
used the cubic symmetry for simplicity, but we have also 
derived equations for the most well-known hexagonal 
structures.  

2.1 Primitive hexagonal packing 

 
2cos(2π )cos(2π 3 )cos (2π )e 0.7x y z =  (24) 

2.2 Hexagonal close-packing (hcp) 

 
2

2

cos(2π )cos(2π 3 )cos (2π )

cos(2π( 1/ 3))cos(2π 3 )sin (2π )

e

e 1.5

x y z

x y z++ =
 (25) 

In order to obtain the hcp cell with the ideal c/a ratio, a 
coefficient 2 2 / 3  must be introduced in the z terms. 

2.3 NiAs structure 

 
2 2

2

1.1cos(2π )cos(2π 3 )sin (2π ) cos(2π( 1/ 3))cos(2π 3 )cos (π )
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x y z
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−
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+ =
 (26) 

2.4 ZnS Wurtzite structure 

2 2

2

2

cos(2π ) cos(2π 3 )cos (2π ) cos(2π( 1/ 3)) cos(2π 3 )sin (2π )
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 (27) 

The structure can be described as the interpenetration of two 
hcp networks shifted by 0.38 along the c axis.  

2.5 Graphite structure 

2 2

2

2

cos(2π )cos(2π 3 )cos (π ) cos(2π( 2 / 3))cos(2π 3 )cos (π )

cos(2π( 1/ 3))cos(2π 3 )sin (π )
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 (28) 

References 

1. Ellis, A. B. J. Chem. Educ. 1997, 74, 1033�1040. 
2. Gillespie, R. J. J. Chem. Educ. 1997, 74, 484�485. 
3. Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Chimie Inorganique; De 

Boeck and Larcier:  Bruxelles, 1996. 
4. Schoen, A. H. Technical Note # D5541, NASA 
5. Hyde, S. T.; Andersson, S.; Z. Kristallogr. 1984, 168, 221�254 
6. Hyde, S. T.; Andersson, S. ; Z. Kristallogr. 1985, 170, 225�239 
7. Hyde, S.T.; Andersson, S. ; Z. Kristallogr. 1986, 174, 225�236 
8. Andersson, S.; Hyde, S. T.; Larsson, K.; Lidin, S. Chem. Rev. 1988, 

88, 221�242. 
9. Nesper, R.; Von Schnering, H. G. Z. Kristallogr. 1985, 170, 138�

140 



Teaching Crystal Structures with 3-D Surfaces Chem. Educator, Vol. 5, No. 6, 2000 305 

© 2000 Springer-Verlag New York, Inc., S1430-4171(00)06434-6, Published on Web 11/17/2000, 10.1007/s00897000434a, 560296.pdf 

10. Nesper, R.; Von Schnering, H. G. Angew. Chem. Int. Ed. 1986, 25, 
110�112. 

11. Von Schnering, H. G.; Nesper, R. Z. Phys. B - Condensed Matter 
1991, 83, 407�412 

12. Von Schnering, H. G. ; Nesper, R. Angew. Chem. Int. Ed. 1987, 26, 
1059�1080. 

13. Andersson, S.; Lidin, S.; Jacob, M. Z. Kristallogr. 1995, 210, 826�
831. 

14. Jacob, M.; Andersson, S. Z. Kristallogr. 1997, 212, 486�492. 
15. Jacob, M.; Andesson, S. Colloids and Surfaces 1997, 129�130, 

227�237. 
16. Andersson, S.; Jacob, M. Z. Kristallogr. 1997, 212, 334�346. 
17. Andersson, S.; Jacob, M. The Mathematics of Structures; 

Oldenbourg Verlag:  München, 1997. 
18. Jacob, M., Andersson, S., Supramolecular Science 1998, 5, 179�

187. 
19. Jacob, M., J.Phys. II France 1997, 7, 1035�1044. 
20. Andersson, S.; Hyde, S. T.; Bovin, J. O. Z. Kristallogr. 1985, 173, 

97�99. 
21. Hoffman, D.; Hoffman, J.; Weber, M. The Scientifice Graphics 

Project. http://www.msri.org/publications/sgp/SGP/ (accessed Nov 
2000). 

22. Geometry Analysis Numerics Graphics. http://www.gang.umass.edu/ 
(accessed Nov 2000). 

23. Gozdz, W.; Holyst, R. Periodic Surfaces. http://niut.ichf.edu.pl/ 
WTGRH/surfaces.html (accessed Nov 2000). 

24. Jacob, M.; Mosset, A. L�Actualité Chimique 2000, March, 41�45. 
25. The Maple program corresponding to Figure 5 can be written as 

follows: 
restart: 
p:=2*3.1416; 
a:=cos(p*x)*cos(p*y)*cos(p*z); 
c:=exp(a); 
with(plots): 
implicitplot3d(c=0.6,x=-0.75…0.75,y=-
0.75…0.75,z=-0.75…0.75); 
Options allows one to control axes, 
orientation, shading, colours, etc… 

26. West, A. R. Basic Solid State Chemistry; J. Wiley: New York, 1991, 
300�330. 

27. Bertaut, E. F. J. Phys. Chem. Solids 1978, 39, 97�102. 
28. Andersson, S.; Jacob, M.; Lidin, S.; Larsson, K. Z. Kristallogr. 

1995, 210, 315�318. 
29. Wells, A. F. Structural Inorganic Chemistry; Oxford University: 

Oxford, 1984. 

 

http://www.msri.org/publications/sgp/SGP/
http://www.gang.umass.edu/
http://niut.ichf.edu.pl/ WTGRH/surfaces.html
http://niut.ichf.edu.pl/ WTGRH/surfaces.html

